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Personalization mechanisms often employ behavior monitoring and machine learning techniques to aid the
user in the creation and management of a preference set that is used to drive the adaptation of environments
and resources in line with individual user needs. This article reviews several of the personalization solutions
provided to date and proposes two hypotheses: (A) an incremental machine learning approach is better
suited to the preference learning problem as opposed to the commonly employed batch learning techniques,
(B) temporal data related to the duration that user context states and preference settings endure is a
beneficial input to a preference learning solution. These two hypotheses are the cornerstones of the Dynamic
Incremental Associative Neural NEtwork (DIANNE) developed as a tailored solution to preference learning
in a pervasive environment. DIANNE has been evaluated in two ways: first, by applying it to benchmark
datasets to test DIANNE’s performance and scalability as a machine learning solution; second, by end-users
in live trials to determine the validity of the proposed hypotheses and to evaluate DIANNE’s utility as a
preference learning solution.
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1. INTRODUCTION

Computational technology is filtering into our everyday lives to a greater and greater
degree. Nowadays it is common for a single person to own multiple computational
devices such as laptops, desktop PCs, smartphones, and tablet devices. Additionally,
smaller and more powerful mobile devices [Iphone 2012; Ipad 2012] are enabling users
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to take computational technology with them wherever they go. Advances in networking
such as wireless technologies, IPv6 [Deering and Hinden 1995], and the Internet of
Things [Gershenfeld et al. 2004] are allowing our environments to be better connected
while advances in embedded technologies are empowering everyday objects [Mistry
and Maes 2009; ADIDAS 1 2005] with processing and communication power.

We are moving towards the view of the world that Weiser [1991] envisaged over
20 years ago and what he termed as ubiquitous computing (also termed pervasive
computing or ambient intelligence). This paradigm painted a picture of environments
filled with computational technology that could beneficially adapt to meet user needs.
Context awareness plays a key role as it supports environment adaptation based on
current environment and user state information. Another key concept is personaliza-
tion. Personalization utilizes additional personal information about individual users
(in addition to user context information) to enable environments to adapt differently for
different users, or for the same user in different situations. This supports the argument
of Satyanarayanan [2001] that personal user information is crucial for system decision
taking, adding that “otherwise it would be impossible to determine which system ac-
tions will help rather than hinder the user.” For example, one individual may prefer his
smartphone to use the least expensive network when he his at home whereas another
user may prefer her smartphone to use the network with best Quality-of-Service (QoS).

In pervasive computing, personalization mechanisms often use rules called user
preferences to drive personal adaptations. A user preference outlines what an individual
user prefers in some contextual situation. For example, the user may have a volume
preference for some multimedia device that states “if I am at home and I am on my
own, turn the volume up high, but if I am at home and I am not on my own, turn
the volume down low.” Personalization mechanisms will monitor the user’s context and
alter the multimedia volume accordingly on behalf of the user.

For each individual user, the quality of the personalization experience depends on the
coverage and accuracy of the set of preferences that the user owns. Ideally a preference
set should contain sufficient preferences to cover all possible environment adaptations.
The user may wish to create and manage all preferences manually but it is usual
to provide support for such tasks. This is because manually creating and managing
the preference set can become a heavy burden depending on its size and complexity
(both of which are likely to increase through time). Therefore, personalization systems
typically include behavior monitoring and machine learning mechanisms to monitor
context-dependent user behaviors, learn preferences, and update the preference set on
behalf of the user.

In a personalization system that supports preference learning the selection of an
appropriate machine learning technique is critical. It must be able to extract accurate
preferences from monitored behaviors in a challenging, ever-changing environment
where input sources come and go. It must be able to keep the preference set up to date
by responding rapidly to changes in user behavior while at the same time remaining
less sensitive to noise from small deviations in user behavior. Additionally, it must be
possible to present the entire preference set to the-user. Therefore, it should be possible
to interpret the internal knowledge of the chosen machine learning technique into a
human-understandable form. This is most important to enable the end-user to have
final control over personalized adaptations and to gain a mental picture of system
intelligence [Dey 2009].

Personalization systems with preference learning functionality have been imple-
mented in various pervasive projects, each adopting different machine learning tech-
niques. Section 2 of this article outlines several of these projects and discusses their
proposed preference learning solutions. Two trends have been observed: the majority
of preference learning solutions employ batch machine learning techniques and do not
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consider the temporal aspects of environmental states and preference settings. These
two trends are questioned in this article with a view to whether they are best practice
for preference learning.

Regarding the usage of batch learning algorithms, it is noted that the preference
learning problem domain is essentially incremental in nature with inputs occurring
one at a time through time. Research suggests that such problems are more naturally
and flexibly handled by incremental algorithms. Regarding the exploitation of tempo-
ral data, it is noted that the sometimes preparational nature of human behaviors can
introduce noise into the behavior history set which is often difficult for conventional
preference learning systems to overcome. It is posed that the exploitation of temporal
data relating to environmental states and preference settings can help overcome such
issues. Based on these observations, two hypotheses are proposed in Section 3: (A) an
incremental machine learning approach is better suited to the preference learning prob-
lem as opposed to the commonly employed batch learning techniques, and (B) temporal
data related to the duration that user context states and preference settings endure is
a beneficial input to a preference learning solution.

These two hypotheses are the cornerstones of the Dynamic Incremental Associative
Neural NEtwork (DIANNE) which is presented in Section 4 in terms of its topology
and capabilities. It is a single-layer neural network designed specifically for the task of
preference learning in pervasive environments. Section 5 introduces DIANNE’s tem-
poral learning algorithm which is incremental and also exploits temporal information
corresponding to environmental states and preference settings. Section 6 details how
DIANNE has been evaluated, first for performance and scalability using benchmark
datasets and second as a real-time preference learner in live user trials. The results of
the both evaluations are presented and discussed. Finally Section 7 provides a conclu-
sion to the work and reflects on the validity of the hypotheses.

2. OTHER PREFERENCE LEARNING SOLUTIONS

Since the early 90’s, pervasive projects have utilized machine learning techniques for
preference learning. However, many different machine learning techniques are avail-
able with each being suited to some problem domain. Therefore, personalization sys-
tems employ different machine learning techniques depending on personalization goals
and required preference formats. Some systems focus on task-driven personalization
where preferences are based on past sequences of behaviors. Other systems focus on
context-driven personalization where preferences are based on past cooccurrences of
context states and behaviors. Since the goals are different it is not surprising that a
variety of machine learning techniques are employed within implicit personalization
systems; however, there are several approaches that are more commonly used. Table I
maps the various learning techniques and algorithms to the projects that employ them.

The authors’ gained firsthand experience of designing and implementing a person-
alization system in the DAIDALOS project [Taylor et al. 2011]. In a process typically
employed in other preference learning systems, the DAIDALOS system monitored user
behaviors where the behavior altered the personalized state of some service/resource.
These behaviors were then stored with a snapshot of the context state in which the
behavior was performed. Once sufficient monitored data was collected, the C45 decision
tree learning algorithm [Quinlan 1986] was then applied to extract context-dependent
preferences indicating what behaviors the user performed in a given context. The deci-
sion tree output could be easily translated into human-understandable form enabling
users to understand what had been learned about them. However, other projects have
placed less focus on user understanding and hence adopted learning algorithms with
more complex internal structures.
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Table I. Machine Learning Techniques and Algorithms Employed for Preference Learning by Pervasive
Projects

ML Technique Algorithm Project
Decision Tree Learning C45 DAIDALOS
Artificial Neural Networks (ANNs) Sparse Network of Winnows (SNoW) GAIA

Multi-layer perceptron Adaptive Home
Stochastic Models Hierarchical Hidden Markov Models

(HHMM)
MavHome

Hidden Markov Models (HMM) Synapse
Naı̈ve Bayesian Classifier Mobilife

Fuzzy Logic Fuzzy rules iDorm
Ubisec

Rule Learning Ripper algorithm Mobilife
Apriori algorithm SPICE

Reinforcement Learning Q Learning Adaptive Home

The GAIA project [Ziebart et al. 2005] is developing a middleware infrastructure for
smart homes and offices which it terms active spaces. It utilizes the Sparse Network of
Winnows (SNoW) algorithm to extract context-dependent preferences from monitored
behavior. Agents can then use these preferences to automatically adapt the environ-
ment appropriately as the user’s context changes in the future. SNoW is essentially a
neural network of perceptrons utilizing the WINNOW learning rule. It is specifically
tailored for domains with large numbers of features that may not be known a priori
and hence is well-suited to pervasive environments where the set of context features
is potentially large and changes with time.

The adaptive home (or neural network home) project [Mozer 1998] utilizes reinforce-
ment learning (Q-learning algorithm) and neural network (multilayer perceptron with
backpropagation) techniques to learn the intentions of inhabitants within the smart
home environment. The aim is to balance user requirements and energy conservation.
To achieve this the adaptive home employs learning techniques to build models of
future context states for future context prediction (e.g., future occupancy of an area
or future hot water usage). User tasks are then analyzed against predicted future
context states to proactively adapt the home appropriately in terms of future user and
energy requirements.

The MavHome project [Youngblood et al. 2005] also focuses on the prediction of
future user tasks to drive adaptations within a home environment. Several machine
learning techniques such as sequential pattern discovery and Markov chains are used
to identify commonly occurring patterns of behavior from stores of monitored historic
behavior data. Once a model of behavior has been learned, an incremental prediction
algorithm (Active-LeZi) is used to predict future behavior in real time (e.g., in a given
context, when the user switches on the living room lights, she then switches on the TV).

The GAIA, adaptive home and, MavHome projects all have autonomy as their key
goal with the intention of mitigating user interaction. However, the Synapse project [Si
et al. 2005] heeds the advice of Barkhuus [2003] who argues that users want to enjoy
autonomous behavior to a moderate degree without losing control. As a result, the
Synapse personalization system performs environment adaptations under two modes:
active and passive. Bayesian networks are employed to learn preferences that cap-
ture the relationships between context states and service usage behavior. This learned
knowledge is then applied to personalize the user’s environment through service provi-
sion. If a preference has a probability above some threshold, personalization operates
in active mode and the service is started automatically. If the preference has a proba-
bility below some threshold, personalization operates in passive mode and the top five
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potential services are presented to the user for manual selection. This approach aims
to minimize incorrect personalization in uncertain situations while at the same time
providing automation when appropriate.

In fact, finding the correct balance between automation and user control is a challeng-
ing personalization issue. If personalization is incorrect due to unsatisfactory learning
techniques or a change in user behavior then it is desirable that the system provides
mechanisms to identify and rectify the problem rapidly, mitigating user involvement.
This places a requirement on preference learning processes to be able to rapidly accom-
modate new patterns of behavior into the preference set without requiring long periods
of time to unlearn old preferences and learn new ones.

This can be a significant challenge when employing learning techniques that typically
execute in batch mode. The nature of such techniques prevents any natural quick
response to changes in user behavior since learning occurs during scheduled executions,
between which no additional updates to internal knowledge are made. If user behavior
were to change immediately after a scheduled learning execution, the preference set
would remain erroneous until the next scheduled execution which may be hours or
even days later. A rapid response solution is required to complement batch learning
techniques. Many projects have identified this requirement and have implemented
mechanisms that rapidly update the preference set in real time based on user feedback.

The Ubisec project [Groppe and Mueller 2005] employs fuzzy logic learning but also
implements mechanisms to enable the quick accommodation of new information into
its customization (or user) profile. If a conflicting behavior occurs (e.g., the device
volume is set to mute by the system but the user unmutes the volume), the real-time
profile evolution process analyzes the differences between the customization profile and
the device status profile. A recommendation profile is generated from the differences
and used to update the customization profile, subject to manual user approval. In
this way the required updates are implicitly gathered from monitored manual device
reconfiguration and do not require the user to understand complex profile GUIs.

Other projects such as SPICE [Cordier et al. 2006] and its predecessor Mobilife
[Sutterer et al. 2007] also implement real-time response techniques. In both projects,
rule learning techniques are used in conjunction with real-time updates based on
explicit negative user feedback received as a consequence of undesired personalization.

The system implemented within the iSpace at Essex University [Hagras 2007] pro-
vides a rapid response mechanism that is not dependent on explicit user feedback.
Once a preference set has been established during the initialization period, prefer-
ences can be modified, added, or deleted when user behavior changes. At such times,
a nonintrusive cycle is entered where new or changing user behavior is specifically
monitored and new preferences learned. Additionally, in a life-long learning phase the
worst-performing preferences are periodically replaced by new ones to preserve system
performance.

3. OBSERVATIONS AND HYPOTHESES

3.1. Incremental over Batch

The majority of the projects mentioned earlier utilize batch machine learning algo-
rithms where preference learning is performed during scheduled executions, between
which the batch algorithm is idle. This decision comes with several consequences due
to the nature and limitations of batch learning algorithms. First, a batch algorithm
requires a behavior history store to be maintained. This store could potentially be-
come very large since all past instances must be retained for reprocessing on con-
secutive learning executions if catastrophic forgetting is to be avoided. Second, batch
algorithms cannot naturally respond rapidly to changes in user behavior that occur
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between learning executions. For this reason, several of the projects mentioned before
have implemented rapid response mechanisms to keep the preference set up to date
between learning executions, should the user behavior change. These rapid response
mechanisms are often termed “incremental” by the projects that employ them due to the
way in which they update the user profile in real time. However, it should be noted that
incremental machine learning algorithms are rarely employed for preference learning.

This is surprising, considering the nature of the preference learning problem domain.
In a pervasive system, examples of user behavior will typically become available and
hence be monitored by the system one at a time, over time as the user interacts with
his environment. The entire dataset will not be known a priori and learning should
ideally continue (almost) indefinitely. One could question why incremental learning
algorithms are rarely applied to a problem domain with an incremental nature. It is
due to these characteristics that Giraud-Carrier [2000] proposes that user modeling
tasks (such as preference learning) are essentially incremental tasks. He goes on to
argue that although incremental tasks can be handled by nonincremental algorithms,
the most natural and flexible way to handle an incremental task is with an incremental
algorithm.

By utilizing an incremental algorithm, all new inputs would be processed immedi-
ately as they are received. The behavior history store would become redundant and
updating of the user’s preference set would not be restricted to cyclic executions. This
would also remove the need for explicit rapid response mechanisms as the incremental
algorithm itself would naturally be able to respond rapidly to changes in behavior.
However, several key issues must be considered. How should new inputs be accommo-
dated into internal knowledge and what if new inputs conflict with existing internal
knowledge? Incremental algorithms also exhibit a learning curve since they learn from
scratch with initially very little information. Initial outputs may be inaccurate and it
may be difficult to determine when the algorithm has received sufficient input to be
trusted.

Indeed there may be some trade-off between accuracy and responsiveness. However,
as Webb et al. [2001] outline, often in an adaptive real-world domain, predictive ac-
curacy comes second to various other factors such as CPU time. They also highlight
that appropriate prompting techniques can greatly improve the user experience when
predictive accuracy is lower. Essentially, the nature of incremental algorithms appears
to be more in line with the nature of the preference learning problem domain. This has
led to hypothesis (A): an incremental machine learning approach is better suited to
the preference learning problem as opposed to the commonly employed batch learning
techniques.

3.2. Temporal Information is Important

It is noted that none of the preference learning solutions reviewed previously makes
use of temporal information related to the duration of user context states or preference
settings. This is mainly due to their policies for context and behavior monitoring where
an individual monitoring event occurs only when the user performs a behavior that
alters the personalized state of some service/resource. Therefore we know that the user
has performed behavior b in context c, but it does not tell us how long b and c endured.
This disregard for temporal information means that such systems will have difficulty
dealing with specific issues that can manifest due to the sometimes varied nature of
human behavior. An example is the issue of preparational actions (preactions).

A preaction is an interaction performed by the user in a previous context to prepare
for entrance into a new context. For example, if the user is entering a lecture theater, he
may mute his mobile phone in the corridor outside before he enters the lecture theater.
Equally, when leaving the lecture theater, the user may unmute his mobile phone just
before he leaves the lecture theater. Most preference learning solutions assume that
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the current user context should be associated with the behaviors performed within and
therefore they monitor behaviors and store them with a snapshot of the current user
context. Hence they would learn a preference stating that the user prefers to mute
his phone in the corridor and prefers to unmute his phone in the lecture theater, even
though the user actually prefers the reverse.

If we reconsider the lecture theater scenario again from a temporal perspective, the
user mutes his mobile phone outside the lecture theater and then enters the lecture
theater. Therefore, the “mute” state prevails for only a short time period in the context
outside the lecture theater, but prevails for a much longer time period in the context
inside the lecture theater. The temporal duration of the cooccurring context and pref-
erence states provides important information that naturally leads one to conclude that
the mute state is more strongly associated to the context inside the lecture theater
where it prevailed for a greater temporal duration.

Taking another example; in some context the user sets his device to always use the
least expensive network. This state prevails for several minutes before the user alters
his device to always select the network with the best QoS. This state prevails for a
number of weeks. Note that the behaviors only occur once in some context. With no
additional temporal information, both actions could be equally associated to the con-
text state. This contrasts with the natural assumption that the second setting is more
strongly associated to the context due to its longer duration. Again, the temporal du-
ration of the cooccurring context and preference states provides valuable information.
This has led to hypothesis (B): temporal data related to the duration that user context
states and preference settings endure is a beneficial input to a preference learning
solution.

Of course, one could always pose scenarios where the temporal information also
introduces noise, for example, if the user performs a behavior and then gets distracted,
allowing the behavior to endure in the current context for an abnormal length of time.
Such noise is inevitable in a system that exploits temporal information. Identifying
when the user is distracted would be extremely challenging; therefore, to gain the
benefits that temporal information can provide (such as overcoming preactions) the
system should provide mechanisms that can undo distraction noise in a rapid fashion.

4. DYNAMIC INCREMENTAL ASSOCIATIVE NEURAL NETWORK (DIANNE)

DIANNE [Gallacher 2011] is a Dynamic Incremental Associative Neural NEtwork
specifically designed for the problem domain of preference learning in pervasive en-
vironments. Its primary goal is to learn user preferences by associating the user’s
context and the user’s preference settings. It implements two key concepts in line with
the hypotheses highlighted before.

First, it implements an incremental approach to learning. It processes inputs as they
occur in real time; it does not need to reprocess past inputs and hence it is not reliant
on any behavior history store. By processing inputs in real time DIANNE can rapidly
respond to new inputs including changes in user behavior and hence there is no need
for any explicit rapid response mechanisms. Of course, many alternative incremental
learning algorithms already exist [Hertz et al. 1991; Fisher 1987; Schlimmer and
Granger 1986; Michalski et al. 1986], including incremental versions of decision tree
building algorithms [Schlimmer and Fisher 1986] like the one implemented by the
authors in the DAIDALOS project. However, to our knowledge, none of the incremental
algorithms that already exist utilizes temporal data and hence does not adhere to the
second hypothesis.

Second, DIANNE takes advantage of temporal data relating to the duration that
user context states and preference settings endure. This is implemented through a
temporal reinforcement learning policy that continuously alters the strength of the
associations between context states and preference settings over time. As highlighted
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Fig. 1. Linear connections between context parameter values and preference settings.

in Section 3.2, it is proposed that the time a preference setting endures in some context
is just as important as the fact that the preference setting was observable in the context.
Therefore the strength of associations learned by DIANNE are not only based on the
simultaneous occurrence of preference settings and context states but also the period
of time that the simultaneous occurrence of preference settings and context states
endured.

4.1. DIANNE Topology

DIANNE topology is a single-layer network although for ease it is described in terms
of two layers: the context layer and the preference layer. The context layer contains
context nodes, each representing some context parameter value (e.g. “home” is a value
of the context parameter “location”). The preference layer contains preference nodes,
each representing some setting of a preference (e.g. “high” is a setting of the preference
“volume”). In its simplest form, DIANNE is a linearly connected network of context
and preference nodes as shown in Figure 1.

The linear connections represent the direct influences that individual context pa-
rameter values have on preference settings. Consider that it is changes in the context
parameter values that affect what preference settings are implemented. For example,
if we have the following preference (written in IF-THEN-ELSE format for clarity):

IF <location = home>

THEN [volume = high]
ELSE IF <location = work>

THEN [volume = low]

we can see that the context parameter values “home” and “work” determine whether
the implemented volume preference setting is “high” or “low”.

A weight exists on each linear connection that represents the strength of the associa-
tion between a specific context parameter value (context node) and a specific preference
setting (preference node). A greater weight value means a stronger association. The
DIANNE algorithm updates the weights on each connection over time based on the
activity of the context node and the preference node. This manipulation of weights
enables DIANNE to learn.

4.2. Node Activations

All nodes in DIANNE have a binary activation depending on the truth of the related
context parameter value or preference setting in the user’s real-world environment.
Context updates (from the user’s context provider) and preference updates (captured
from the user’s personalizable services) ensure that the network nodes always reflect
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Fig. 2. DIANNE internal structure and interaction with external sources.

the current real-world state. Therefore, the context layer provides a representation of
the user’s context state and the preference layer provides a representation of the user’s
preference settings. Figure 2 illustrates how DIANNE interacts with external input
sources.

Since each context node only represents one context parameter value it may be
the case that several context nodes exist in the network, all relating to the same
overall context parameter (e.g., there may be multiple context nodes each representing
a different value of the context parameter “location”). It is assumed that a user’s context
model can only have one true value for each context parameter at a time. To implement
such a constraint, the context nodes relating to the same context parameter are grouped
together into context node groups (as shown in Figure 2) where the activation of the
member context nodes is mutually exclusive. In each context group, the active node is
always the one that represents the context parameter value that is currently true in
the real-world environment.

Each context node has an associated input potential. The input potential is the value
that the context node pushes into the network. As the activity of context nodes change
so do their input potentials and hence the overall input to the network. The input
potential of context node βi is defined as

ip(βi) =
{

1 if βi is active
0 if βi is inactive.

(1)

The same grouping policy is also applied to preference nodes since it is also assumed
that only one preference setting of a particular preference can be true at a time. Hence
preference nodes relating to the same preference are grouped together into preference
node groups (also shown in Figure 2) where the activation of the member preference
nodes is also mutually exclusive.

However, the activation of preference nodes is driven by two factors: (a) real-world
input from services and (b) the sum of weighted connections, reflecting DIANNE output.
Each preference node has an output potential that indicates how strongly DIANNE
believes that this preference node should be active given the current context. The
higher the potential, the stronger the belief that the node should be active. Each
preference node has some number n of inputs where n is the total number of context
nodes. The output potential of a preference node is the sum of its inputs; therefore the
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output potential of α j at time t is defined as
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where σ is the dynamic ramped squashing function with a variable gradient that
maps the output potential from the possibly very large range of values to a finite
range of values between −1 and +1. It is dynamic because of the continuous, life-long
incremental nature of DIANNE learning. If a static gradient were used, saturation
points could eventually be reached over time (e.g., if a preference setting always endures
in some context) meaning that further, equivalent updates to outcome potentials would
serve no purpose. Therefore σ is implemented as a dynamic squashing function with a
variable gradient so saturation does not occur over time.

For each preference group, the gradient of σ is defined based on the output potentials
of the group’s winner node αwin (i.e., the node with the highest output potential in the
group) and the group’s loser node αlose (i.e., the node with the lowest output potential
in the group). The ramped function σ is defined as:

σ =
⎧⎨
⎩

1 : if op(αwin) ≥ highlimit
grad • op

(
αt

j

)
−1 : if op(αlose) ≤ lowlimit

⎫⎬
⎭ ,

where highlimit and lowlimit dictate the dynamically adjustable positive and negative
saturation points of σ . The grad variable is the gradient of the slope of σ defined as

grad = y2 − y1

x2 − x1
= 1 − (−1)

highlimit − lowlimit
= 2

highlimit − lowlimit
.

The highlimit and lowlimit variables dictate the saturation points of σ . The variable
highlimit dictates the positive saturation point while lowlimit dictates the negative
saturation point. At time t0 highlimit is initialized to +φ and lowlimit is initialized to
−φ where φ is some constant greater than zero. In current DIANNE implementations
φ is initialized to 10. The value of φ only affects the frequency with which the gradient
of the dynamic squashing function updates. During DIANNE operation if op(αwin) ≥
highlimit or op(αlose) ≤ lowlimit the highlimit variable is increased by φ while lowlimit
is decreased by φ. The new value of grad is then calculated.

Each preference group implements mutually exclusive activation in a winner-takes-
all fashion where the winner node (the node with the greatest output potential in the
preference group) is activated. The winner node is the node that DIANNE believes
should be active and implemented in the real world. In the majority of cases the
winner node will also be the active node; however, sometimes this may not be the
case. This situation indicates a change in user behavior from what has been observed
and learned in the past. For example, DIANNE may identify the “low” setting of some
volume preference as the winner node but the user may have manually changed the
setting to “high”. DIANNE handles such conflicts as part of its algorithm, described in
Section 5.

It is noted that DIANNE could lend itself to alternative topologies. For example, each
outcome node group (preference grouping) could be represented as an independent net-
work. In doing so the context layer of each independent network could be tailored to
contain nodes that are most influential to each outcome node group, enabling DIANNE
to take advantage of a priori information of the problem domain. The challenges of
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Fig. 3. XOR network states.

this topology would be the synchronization of mutual exclusivity in the context lay-
ers of multiple independent networks as well as the overhead in managing multiple
independent networks.

4.3. Weight Manipulations

Each connection between a context node β (prenode) and a preference node α (postnode)
in DIANNE has an associated weight value. The weight value determines the strength
of the connection between β and α (and hence the strength of the association between
the real-world values they represent). It is the manipulation of these weights that
allows DIANNE to learn. The plasticity of weights is dependent on the activity of
pre-and postnodes and follows Hebbian [Hebb 1949] learning policies. A weight will
increase if the positive activity of β leads to the positive activity of α, decrease if the
positive activity of β leads to the negative activity of α, and stay the same if β is not
active.

The weight of synapse wmn at time T is defined as

wT
mn = (

wT −1
mn + activityT (αm, βn)

)
,

=
(

T∑
t=0

activityt(αm, βn)

)
(3)

where:

activityt(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+1 : if βn is active at time t and
αm is active at time t;

−1 : if βn is active at time t and.

αm is not active at time t;
0 : if βn is not active at time t

In many artificial neural networks weights are initialized randomly and modified to
converge on some target function during the course of the training process. However,
due to the “learning from scratch”, incremental nature of DIANNE, it is natural to
initialize the weights to zero giving them an initial state that is neither excitory nor
inhibitory. DIANNE learning can continue in a life-long fashion, therefore the weights
will not converge on some definitive target value. Some may converge towards upper
or lower bounds (±∞) for periods of time but equally others may not.

4.4. DIANNE Generality

(1) Nonlinear Problems. A well-documented constraint of single-layer neural networks
is their inability to handle nonlinear problems such as XOR. As a single-layer
network, DIANNE will not be able to represent XOR; however, in this problem domain
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(context-dependent preference learning) DIANNE will never need to solve the XOR
problem. Consider the four XOR states shown in Figure 3.

It is possible to represent state A in DIANNE. When all context nodes are inactive
DIANNE can make no prediction so it will not return an outcome node in these circum-
stances. States B and C can also be represented by DIANNE. When input is available
(i.e., some context nodes are active) DIANNE will always return the most likely out-
come node for each node group. If there is only one outcome node in a group, that
outcome node will always be returned in response to input. With that in mind, state D
will never need to be represented by DIANNE as when input is available output will
always be provided.

(2) Continuous Inputs. DIANNE has been designed to handle discrete inputs. Due
to the fact that each network node is binary and represents only one value, continuous
inputs would result in the creation of numerous network nodes and would decrease
performance significantly in a manifestation of overfitting. Since many context at-
tributes can relate to continuous sensor inputs we must consider how this data is
handled in DIANNE. As is the case with many other learning algorithms it is neces-
sary to discretize continuous inputs in a preprocessing step before they are presented
to DIANNE. In the network example shown in Figure 2 it is assumed that discretized
symbolic locations such as “home” and “work” have already been inferred from contin-
uous raw sensor inputs such as GPS coordinate, signal strengths, etc. as is typical in
many pervasive systems.

4.5. DIANNE Capacity

The capacity of a network is often expressed as a function of N, the number of nodes
the network contains. However, DIANNE groups nodes into mutually exclusive sets.
Therefore we must define the capacity of DIANNE in terms of both network nodes and
groups.

First we will consider the number of possible input patterns Pin that the network can
handle. A context group c contains some n number of context nodes. Since the activation
of each node in c is binary the total number of possible node activation patterns in c
is 2n. However, we must discount any activation patterns that violate the mutually
exclusive constraint on the activation of nodes within the same group. Therefore, if c
contains n nodes the number of possible node activation patterns for c is

(n + 1).
If we have k context node groups then

Pin = (
(n1 + 1) × (n2 + 1) × · · · × (nk + 1)

)
=

k∏
i=1

(ni + 1).

Linear connections, binary node activations, and the single-layer architecture of
DIANNE mitigate against internal hidden complexity. Therefore each input pattern
Pi

in has one associated output pattern Pi
out. In other words,

Pout = Pin.

Therefore DIANNE storage capacity is equal to the number of possible input patterns
(i.e., the number of possible context situations) Pin.

5. DIANNE TEMPORAL LEARNING ALGORITHM

DIANNE temporal learning algorithm is based on the two hypotheses outlined in
Section 3. It handles inputs incrementally and implements a temporal reinforcement
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Fig. 4. Illustration of the main processes involved in the DIANNE temporal learning algorithm.

policy which dictates that network weights are updated (i.e., learning occurs) on a
temporal basis in a real-time, repeated cycle. Unlike most conventional neural systems,
DIANNE learns associations between vectors based on the duration of vector state
cooccurrences rather than the fact that they cooccurred at one instance in time.

The DIANNE learning algorithm iterates in a continuous cycle with a frequency of
one second, thereby learning in real time in a life-long manner. Figure 4 illustrates
the temporal DIANNE learning algorithm. Initial algorithm designs tended towards
an asynchronous approach with each network node operating in its own thread, updat-
ing itself depending on asynchronous inputs from the environment and other nodes.
However, synchronization issues quickly appeared and network accuracy suffered as
a result. The synchronized approach proposed may be slightly less reactive (up to one
second slower) than an asynchronous approach; however, the required reaction time
of DIANNE in a pervasive system is often application dependent and will also be
influenced by the performance capabilities of the pervasive space.

The DIANNE algorithm can be split into two major processes. The layer update
process is concerned with processing input (if any) received from the environment
since the previous iteration. The learning process is concerned with updating DIANNE
weights and providing output (if any) to the environment.

5.1. The Layer Update Process

The main purpose of this process is to ensure that the network nodes correctly reflect
the environmental state before any learning updates occur. The context nodes should
reflect the user’s current context and the preference nodes should reflect the user’s
current preference settings. Failure to perform this process correctly will result in the
network associating incorrect context and preference nodes. Between iterations, all

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 1, Article 5, Publication date: April 2013.



5:14 S. Gallacher et al.

context changes received from the context provider are stored in a context buffer and
all preference changes received from the user’s personalizable services are stored in a
preference buffer. The buffers then provide input to the three subprocesses involved in
the layer update process.

(1) Update Context Layer. The first subprocess involves updating the context layer
based on the contents of the context buffer. This ensures that the context layer reflects
the user’s current contextual state (for example, since the last algorithm iteration, the
user may have changed location). The pseudocode for this process is detailed next.

while context buffer contains more inputs
if context node group cm exists in DIANNE
if context node βi ∈ cm

set activity of βi to active
set activity of all other nodes in cm to inactive

else
create new context node βnew in cm
connect βnew to all existing preference nodes and initialise new
weights to zero
set activity of βnew to active
set activity of all other nodes in cm to inactive

else
create new context node group cnew
create new context node βnew in cnew
connect βnew to all existing preference nodes and initialise new
weights to zero
set activity of βnew to active

update input potentials of all nodes in cm based on equation (1)

(2) Feed Forward Context Input. The second subprocess feeds the new context inputs
forward through the network to the preference layer where the preference nodes are
updated accordingly. The preference layer will then represent what the network be-
lieves to be the preferred preference settings in this context. The pseudocode for this
process is detailed next.

for each preference node group on
for each preference node αj ∈ on

calculate output potential based on equation (2)
activate winner node in on

(3) Update Preference Layer. The final subprocess involves updating the preference
layer based on the contents of the preference buffer. In the previous subprocess the
outcome vector was updated based on new context input to reflect what the network
believes to be true in this context. By contrast, this subprocess updates the preference
nodes based on new user inputs to reflect any changes in preference settings made by
the user. The pseudocode for this process is detailed new.

while preference buffer contains more inputs
if preference node group on exists in DIANNE
if preference node αj ∈ on

set activity of αj to active
set activity of all other nodes in on to inactive

else
create new preference node αnew in on
connect αnew to all existing context nodes and initialise new
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weights to zero
set activity of αnew to active
set activity of all other nodes in on to inactive

else
create new preference node group onew
create new preference node αnew in onew
connect αnew to all existing context nodes and initialise new weights
to zero
set activity of αnew to active

5.2. The Learning Process

Once the DIANNE layers reflect the current real-world state of context and prefer-
ence settings, the learning process can execute to strengthen and weaken associations
between nodes, enabling DIANNE to learn. Within the learning process, two learning
rules are utilized. First, the Hebbian learning rule is used for normal, temporally driven
updating of the synapse weights. This learning always occurs in each iteration of the
DIANNE algorithm, incrementally increasing and decreasing network weights based
on pre-and postnode activations. Secondly, an error-driven policy is utilized to update
synapse weights during conflict resolution. This learning only occurs when conflicts
exist between network knowledge and real-world states and is based on the potentials
of the conflicting network nodes. There are three subprocesses involved in the overall
learning process. Each is described in detail next.

(1) Update Weights. First, the synapse on each network connection is updated based
on the Hebbian learning rule. The pseudocode for the process of updating all synapses
is detailed in the following.

for each connection (αjβi)
for each weight wji

update value of wji based on equation (3)

(2) Feed Forward New Weights. As in the layer update process, a feed forward subpro-
cess is now required to feed the new synaptic weights forward to the preference layer,
allowing the preference nodes to reflect network output, postlearning. The pseudocode
for this process is detailed now.
for each preference node group on
for each preference node αj ∈ on

calculate output potential based on equation (2)
identify winner node in on

(3) Resolve Conflicts and Provide Output. At this stage DIANNE can now provide
output to the environment as appropriate and resolve conflicts within the network.
The pseudocode for the process of resolving conflicts and providing output to the envi-
ronment is detailed next.

for each preference node group on
if winner node is active

if winner node is a new winner node
send output to service

else
resolve conflict between network and real world

At this point in the algorithm cycle, each preference group has a winner node and
an active node. The winner node indicates the preference setting that the network
believes should be implemented while the active node indicates the preference setting
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that has actually been implemented by the user. If the winner node and active node
are the same node we can say that what DIANNE believes to be true is actually true in
the real world, hence there is no conflict. In such a situation DIANNE can now provide
output to the environment if appropriate.

The current winner node of this preference group is checked against the winner node
of the previous algorithm iteration. If they are different this means that a new winner
node has been identified for this context and must be communicated to the environment.
In this case DIANNE broadcasts the new winner node as output. If the winner node is
the same as the previous iteration, the environment already knows about and conforms
to this winner node and hence DIANNE does not need to communicate the winner node
again.

A conflict occurs within the network when the winner node is not the same node as
the active node, that is, what the network believes should be implemented is not what is
actually implemented. This usually occurs when the user changes her preferred prefer-
ence setting in some context. To resolve this conflict the difference between the output
potentials of the winner node and the active node must be decreased. The Hebbian
learning rule will not decrease the difference in a sufficient time frame. For example,
if Hebbian were applied, the active node would need to endure in the context state for
a comparable length of time as the winner node had in the past before the active node
could gain the higher output potential of the two and become the winner. Instead the
stochastic gradient descent learning rule (also called the incremental gradient descent
learning rule (also called the incremental gradient descent learning rule) is utilized
to reduce the difference between the node potentials. This learning rule is the basis
of other incremental algorithms such as WINNOW [Littlestone 1988] and the pocket
algorithm [Gallant 1990]. When applied in DIANNE, the potential of the active node
is boosted (by a factor of the difference between the potentials of the active and winner
nodes) so that it can better compete with the output potential of the winner node. The
larger the difference between the potentials of the active and winner nodes, the more
significantly the active node potential will be boosted. Really entrenched behaviors will
require several conflicts before new behaviors overcome old ones; however, one-instance
learning is less desirable.

This change in output potential is reflected down through the weights on the connec-
tions between the active node and the currently activated context nodes. The weights
on these connections are boosted by some equal value that is determined by dividing
the active node boost value by the number of weights to be updated. This boosting pro-
cess only occurs once when a conflict is first identified in some context. On subsequent
algorithm iterations only Hebbian learning is applied as usual to reduce the possibility
of one-instance learning.

It should be noted that DIANNE has no specific learning rate parameter. The rate at
which the network learns is influenced by both the magnitude of the Hebbian weight
updates (±1) and the frequency with which the DIANNE algorithm repeats in the
ongoing cycle (1 second). Changing the value of these constants will not have any great
effect on the accuracy of DIANNE. They influence how frequently the gradient of the
dynamic squashing function (of each preference group) will be recalculated.

The use of two learning rules (Hebbian for temporal reinforcements and stochastic
gradient descent for conflict resolution) is key to dealing with noise introduced by the
temporal data itself (i.e., if the user gets distracted after setting some preference, hence
the preference endures in a context for a longer time than it should). For example, if
the user sets the volume of some service to “low” and then becomes distracted, the “low”
node will be regularly reinforced in this context in line with the Hebbian rule and will
eventually become the group node with the highest output potential in this context.
When the user eventually changes the service volume (e.g., to “high”) this will create a
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Table II. Summary of Benchmark Dataset Characteristics

conflict situation. In this case the “high” node’s output potential will be more radically
altered in line with the stochastic gradient descent rule, enabling the “high” node to
more rapidly compete with the “low” node without having to endure for a comparable
time in the same context.

6. DIANNE EVALUATION

DIANNE has been evaluated in two ways. To evaluate performance and scalability
as a machine learning solution, DIANNE has been applied to benchmark datasets.
DIANNE performance is presented and discussed and comparisons are drawn against
the performance of other machine learning algorithms applied to the same datasets. To
evaluate DIANNE’s utility as a preference learner in a real-time pervasive environment
DIANNE has also been deployed as a preference learner in live user trials. The user
trials have provided real-time and temporal data to evaluate the incremental and
temporal nature of DIANNE.

6.1. DIANNE Benchmark Evaluation

The goal of this process was to determine DIANNE performance and scalability over
benchmark datasets. A total of five datasets were chosen from the UCI Machine Learn-
ing Repository [UCI 2007] based on their attribute and class values and their past
usage in the evaluation of other machine learning algorithms. They are as follows.

—Breast Cancer (CANCER) This dataset was provided by the University Medical
Centre, Ljubljana, Slovenia for the problem of predicting the reoccurrence of breast
cancer five years after the removal of a tumor.

—Breast Cancer Wisconsin (CANCERW) This was provided by the University of Wis-
consin Hospitals for the problem of predicting whether a lump is cancerous.

—Congressional Voting (VOTE) This was provided by the Congressional Quarterly
Almanac for the problem of predicting whether a member of Congress will vote
democrat or republican.

—Lymphography (LYMPH) This was provided by the University Medical Centre, Ljubl-
jana, Slovenia for the problem of determining the type of cancer in lymphography.

—SPECT Heart (HEART) This was provided by the Medical College of Ohio for the
problem of diagnosing cardiac SPECT images.

The selected datasets include complete and incomplete examples and have varying
characteristics as summarised in Table II.

A test harness was developed to control the DIANNE benchmark tests. The test har-
ness interacted with DIANNE, providing inputs and collecting outputs for comparison
as illustrated in Figure 5. The datasets were stored as individual scripts which were
then read into the evaluator one at a time.

When a dataset was fed into the evaluator, first it was randomly divided into 70%
training and 30% testing subsets. The training subset was then fed into DIANNE one
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Fig. 5. DIANNE benchmark test harness.

Fig. 6. DIANNE performance, compared against other algorithms across benchmark datasets.

instance at a time with the attributes feeding into the context layer and the class value
feeding into the preference layer. DIANNE processed each instance incrementally and
updated internal knowledge accordingly.

The testing subset was then fed into DIANNE one instance at a time. The attributes
were fed into the context layer and based on this new vector DIANNE returned a class
value as output to the evaluator. The evaluator checked the output against the correct
class value for that instance and kept a tally of the number of correct and incorrect
outputs received from DIANNE. This entire test harness process was repeated ten
times for each dataset to give ten percentage accuracies which were then averaged to
give one overall percentage accuracy for each dataset.

6.1.1. Results. Figure 6 presents the results of DIANNE on all five datasets. It also
shows how the performance of DIANNE compared with that of other well-cited algo-
rithms where comparable results (using the same training and testing set proportions)
were available for the same benchmark datasets.
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As can be seen, many well-cited machine learning algorithms, both batch and in-
cremental in nature, are available for comparison. Over the five benchmark datasets
DIANNE achieves accuracy figures as good, if not better, than other algorithms. Com-
pared to batch algorithms, DIANNE performs comparably with C45 and outperforms
CN2, simple bayes, and assistant on the CANCER dataset. The naive Bayes algorithm
is outperformed on the HEART and VOTE datasets. These are encouraging results
since DIANNE does not utilize a priori knowledge of the entire dataset and does not
reprocess past training data. Compared to incremental algorithms, DIANNE outper-
forms AQ15 on the CANCER dataset and achieves accuracies comparable to that of
the STAGGER algorithm on the VOTE dataset.

6.2. DIANNE Real-Time Evaluation

DIANNE was also evaluated in a real-world pervasive environment with end-users. The
goal of this evaluation was to test DIANNE’s utility as a preference learning solution in
a pervasive personalization domain with real-time, incremental inputs. This evaluation
was based on a personalized television experience where the learning challenge for
DIANNE was to incrementally learn context-dependent viewing preferences for each
individual trial participant.

Each trial participant was asked to make several visits to various screens placed
around a University department building. On certain visits the participant could choose
a channel to watch. They were not given any guidance on how they should make their
channel choices and were free to watch channels, switch between channels, and change
their minds as they pleased. The learning challenge for DIANNE was to incrementally
associate user context with channel selection.

During the trial, participants were also asked to reconsider their channel selections
allowing them to change their viewing behaviors if desired. The learning challenge for
DIANNE then became one of incrementally adapting internal knowledge to appropri-
ately learn any new overriding behaviors. In this instance, the scope of the trial to
facilitate preactions was limited. However, further analysis facilitating preactions is
pending and will be reported in future work.

The user trials took place over a two-week period in April 2011. A total of 24 people
took part in the trials. Specifically, 75% of the participants were male and 71% of
participants were aged between 26 and 35. A trial environment was set up as illustrated
in Figure 7. Three plasma screens, A, B, and C (each attached to a PC), were positioned
at different locations in a University department building and connected to the local
ethernet network. Each screen could play one of 3 different channels. The trial server
was a PC connected to the local wireless network. It managed access to the three
screens and provided a service interface for user control devices, such as the remote
control, to utilize.

The remote control provided a GUI with buttons for the various channels so that trial
participants could select channels. Inputs received through the GUI were forwarded
to the trial server which directed them to the screen closest to the user. The user’s
location was provided by an RFID system that identified the location of the RFID tag
that the trial participant wore. DIANNE was hosted on the trial server. Here it received
context updates (related to the user’s location) from the RFID system and preference
updates (regarding channel selection) from the remote control GUI. These updates were
then processed in real time by DIANNE’s context and preference layers. In this way
DIANNE could perform incremental learning based on live, temporal inputs. DIANNE
outputs, indicating a channel selection, were forwarded to the appropriate screens so
that the screens would automatically adapt based on the current user context. Note
that each trial participant performed the trial individually and a separate DIANNE
was generated for each individual in each trial. This is in line with the intended
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Fig. 7. Trial environment network diagram.

deployment of the DIANNE in a pervasive system where there is a one-to-one mapping
between user and DIANNE. Therefore, the trials did not consider conflicts between
the preferences of multiple individuals. Such conflicts should be handled by resource
sharing mechanisms that are external to DIANNE.

A trial script was produced and strictly adhered for each trial participant. This
ensured that all trials were equivalent and helped to reduce any bias that could be
imparted on the participant by the trial coordinator. The trial script contained the
following steps.

(1) The participant was given an information sheet to read which outlined the format
of the trial.

(2) The participant was given an RFID tag to wear around his/her neck, a clipboard
with a trial sheet, and the remote control device so he/she could control the screens.

(3) Primary Selection Circuit—The participant visited each screen, selected a channel,
and wrote the channel, number in a box beside the screen name on his/her trial
sheet.

(4) Primary Test Circuits (PT1, PT2, PT3)—The participant completed a further three
circuits of the screens. During the circuits, if a screen didn’t show the correct
channel (i.e., the channel that the participant selected and wrote in the box beside
that screen name) the participant had to correct the screen using the remote control
to set the screen to the correct channel. If a screen did show the correct channel
then the participant was not required to perform any action.

(5) Secondary Selection Circuit—The participant visited each screen, selected a chan-
nel (which may or may not be the channel they selected on the primary selection
circuit), and wrote the channel number in a box beside the screen name on his/her
trial sheet.

(6) Secondary Test Circuits (ST1, ST2, ST3, ST4, ST5)—The participant completed a
further five circuits of the screens. As with the primary test circuits if the screen did
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Table III. Generated Dataset Descriptions

Dataset Description
Tester Observations
(TO)

During the primary and secondary test circuits the tester
notes what channel is automatically presented each time
the participant comes into proximity of a screen and
whether or not this is the correct channel.

Monitored Behaviour
(MB)

All interactions between the participant and the remote
control GUI are captured. When the participant interacts
with the GUI to select a channel on some screen the
channel number is stored with the current location of the
participant (provided by the RFID reader). This creates a
list of channel-location pairs representing the channel
selections made on each screen. This dataset is typical of
the monitored user behaviour histories gathered for
preference learning in many pervasive systems.

Temporal Monitored
Behaviour (TMB)

This dataset is an extension of the Monitored Behaviour
dataset. Temporal information is included to represent the
duration that each channel-location pair prevails. To
achieve this the latest channel-location pair is duplicated
in the dataset for every second that it prevails. Therefore
this dataset represents the channel selections made on
each screen and how long the participant watches the
various channels on each screen.

Fig. 8. Graph illustrating the percentage accuracy of DIANNE over the three primary test circuits.

not show the correct channel the participant corrected the screen using the remote
control. If the screen did show the correct channel no further action was required.

During each trial a number of datasets were generated for later analysis and pro-
cessing. Table III describes the datasets that were generated during each trial.

6.2.1. Results. The TO datasets were analyzed to investigate the accuracy and learn-
ing rate of DIANNE over the primary and secondary test circuits. On each primary
test circuit the tester noted if DIANNE drove the presentation of the correct channel to
the participant at each screen. Looking at these figures over 24 trials we can identify
a percentage accuracy for DIANNE on each primary test circuit. Figure 8 illustrates
that DIANNE retains a high percentage accuracy over the three primary test circuits
(PT1, PT2, and PT3) and also shows a slight increase in accuracy as DIANNE improves
internal knowledge over time with each circuit.

During the secondary test circuits the tester noted if DIANNE drove the presentation
of the correct channel to the participant at each screen. Taking these figures over 24
trials we can identify a percentage accuracy for DIANNE on each secondary test circuit.
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Fig. 9. Graph illustrating the percentage accuracy of DIANNE over the five secondary test circuits.

Figure 9 illustrates that DIANNE accuracy is below 10% on ST1 but increases rapidly
to an accuracy above 95% by ST5.

The initial low accuracy value of 10% is expected due to the unpredictable change
in behavior (new channel selections) on the secondary selection circuit (that took place
between PT3 and ST1). DIANNE recovers from this unpredictable behavior change
over time, as illustrated by the curve, and returns to high accuracy values within 4 test
circuits. This compares favorably with other approaches tackling concept drift such as
Kolter and Maloof [2007] where the recovery period is around 20 timesteps.

The Monitored Behavior (MB) datasets are a list of action-context pairs that can
be applied to other learning algorithms to give a comparison with DIANNE perfor-
mance. In this instance the C45 decision tree building algorithm was chosen as the
algorithm for comparison as it has been utilized by the authors for preference learning
in the DAIDALOS project due to both its accuracy and tree-based output which can be
translated into human-readable form.

At the end of each trial DIANNE and C45 algorithms were tested to see if they
could correctly predict the participant’s secondary viewing preferences (i.e., the channel
selections that the participant made during his/her secondary selection circuit). The MB
dataset was applied to the C45 algorithm and from the tree-based output an IF-THEN-
ELSE preference rule was generated indicating a channel number for each location.
This was compared with the participant’s actual secondary viewing preferences to give
an accuracy figure for the C45 algorithm. The preferences held in DIANNE’s final state
were also compared with the participant’s secondary viewing preferences to give a final
accuracy figure for DIANNE.

In addition, the Temporal Monitored Behavior (TMB) dataset was also applied to
the C45 algorithm at the end of each trial. The TMB dataset included extra context-
action pairs extending the MB dataset with temporal information. The TMB dataset
replicated DIANNE input allowing the C45 algorithm to take advantage of temporal
data. The reason for this additional dataset is to ensure that the C45 algorithm was
not hampered by less inputs or data than DIANNE. As with the MB dataset, the
TMB dataset was applied to the C45 algorithm and from the tree-based output an
IF-THEN-ELSE preference rule was generated indicating a channel number for each
location. This was compared with the participant’s secondary viewing preferences to
give an accuracy figure for the C45 algorithm operating on a temporal dataset. Taking
the accuracies of the DIANNE, C45(MB) and C45(TMB) over all 24 trials gives an
average accuracy for each algorithm, illustrated in Figure 10.

The graph shows that DIANNE is over three times more accurate at learning the
participant’s secondary viewing preferences as the C45 algorithm on the MB dataset.
The graph also shows that there is some improvement in the accuracy of the C45
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Fig. 10. Graph illustrating the final accuracy of DIANNE and the C45 algorithm on a nontemporal dataset
(MB) and the C45 algorithm on a temporal dataset (TMB) over all 24 trials.

algorithm on the TMB dataset suggesting that temporal information is of benefit.
However, even with added temporal information the C45 algorithm still only achieves
an accuracy of less than 50%, roughly half that of DIANNE at 96%. In the case of
the TMB datasets both algorithms have essentially received the same input except
DIANNE processes inputs in real time as they occur throughout the trials whereas the
C45 algorithm processes all inputs in batch after the trial is completed.

Looking more closely at the IF-THEN-ELSE preferences generated by the C45 al-
gorithm on the MB and TMB datasets it can be seen that they often portray the
participant’s primary viewing preferences (i.e., the channels he/she selected during the
primary selection circuit). This is understandable since most participants spent sig-
nificantly longer time selecting channels on their first primary selection circuit than
on their second, meaning that their primary channel selections often appear more
frequently in the MB and TMB datasets.

It is understood that these test results do not provide a like for like comparison
as the C45 algorithm is not designed for changing rules, but rather for static situa-
tions where recent data is not weighed more heavily than less recent data. No tree
pruning techniques have been applied in this instance and it is understood that C45
favors problem domains with larger numbers of attributes. However, the MB and TMB
datasets illustrate a typical preference learning situation. User preferences are not
static and often change over time for various reasons. What this comparison illustrates
is that algorithms such as C45 are perhaps not best suited to the preference learning
problem domain. By comparison DIANNE can respond more rapidly to changes in be-
havior, returning to a high performance accuracy in an acceptable time frame (in this
case, within a few test circuits). This reflects the findings of Segal and Kephart [2000]
when comparing incremental and batch learning techniques for the Swiftfile system.
DIANNE can also match many nonnetwork-based algorithms in terms of its trans-
latability into human-understandable form. This is highly important in the pervasive
domain where internal knowledge should be available for presentation to end-users.

7. CONCLUSION

An analysis of existing preference learning systems provides two key observations.
First, incremental machine learning algorithms are rarely used for preference learning
even though they seem to better align with the incremental nature of the problem
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domain. Second, temporal data relating to the duration with which context states and
preference settings cooccur is typically ignored. Contrary to typical trends, this article
proposes two hypotheses: A and B. Hypothesis A proposes that an incremental learning
algorithm is preferential over batch algorithms for preference learning. Hypothesis B
proposes that temporal information is a beneficial input to the preference learning
process.

DIANNE is presented as a tailored solution to the challenge of preference learning
in pervasive environments. It conforms with the two hypotheses to provide a platform
to test their validity. DIANNE is a single-layer neural network that learns associations
between context and preference states to identify what preference settings to apply
in a given context. The exclusion of hidden layers allows for rapid and noncomplex
updating of internal knowledge. Although this means that DIANNE cannot represent
nonlinear problems such as XOR it is shown that the latter case will never need to be
handled in this problem domain. A single-layer topology also enables the network to
be easily translated into a human-understandable form which is a key requirement for
end-users.

DIANNE is an incremental learning system processing inputs one at a time as they
occur in real time. Hence it can respond rapidly to changes in user behavior, it is not
dependent on a store of user behavior history, and it does not need to reprocess past
inputs. It employs a temporal learning algorithm that executes continuously in a life-
long manner, taking advantage of temporal preference information to overcome user
behavior anomalies such as preparational actions. Associations between context and
preference outcomes are strengthened and weakened based on the temporal duration
in which a context state renders some preference setting to be implemented.

An incremental conflict resolution scheme enables DIANNE to deal with unpre-
dictable changes in user behaviors. Conflicts are resolved at one instance in time based
on current knowledge and without the need to reprocess past inputs. The stochastic
gradient descent learning rule is used in conjunction with the Hebbian learning rule
to accommodate new behaviors into internal network knowledge in a reasonable time
frame without giving the perception of one-instance learning.

DIANNE was tested and evaluated both in terms of performance and scalability as a
machine learning algorithm and in terms of its utility as a preference learning solution
in a real-time environment. Benchmark datasets were applied to DIANNE to simulate
situations with multiple attributes. The performance of DIANNE on such datasets
was presented and compared with that of other well-cited algorithms, both batch and
incremental in nature. Overall, DIANNE performed favorably across all datasets and
in some cases outperformed its counterparts.

DIANNE was also deployed in live user trials to evaluate its utility as a preference
learner in a real-time environment with real end-users. The results showed that DI-
ANNE is able to identify initial viewing preferences very rapidly, meaning that the
participant is almost always shown the correct channel at each screen on the primary
test circuits. The results also show that during the secondary test circuits, DIANNE
accuracy dropped immediately after the user changed his/her viewing behavior. How-
ever, the accuracy steadily increased to almost 100% over the course of the secondary
test circuits, showing that DIANNE can rapidly recover from unpredictable shifts in
user behavior.

When comparing DIANNE with the C45 tree building algorithm on temporal and
nontemporal datasets, the results showed that DIANNE outperformed the C45 algo-
rithm regardless of whether the temporal or nontemporal dataset was used. However,
C45 performance is improved with the temporal dataset suggesting that extra tempo-
ral information is of benefit. These results reflect the findings of several other works
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that concluded an incremental learning system is the optimal solution in incremental
problem domains such as preference learning in pervasive environments.

Reflecting on Hypothesis A, the results seem to indicate that an incremental learning
algorithm can respond more rapidly to new inputs and behavior changes. Based on the
findings of these trials one could conclude that the hypothesis is correct. Reflecting
on Hypothesis B, the trial results seem to indicate that this hypothesis is also correct
as an improvement in performance is observable when temporal data was included as
input to the C45 batch algorithm.

As well as a stand-alone implementation of DIANNE, it has also been fully integrated
as a key preference learning system within the Personal Smart Space (PSS) platform
developed by the PERSIST project [Crotty et al. 2008]. The capabilities of DIANNE
were successfully demonstrated at a final project review and DIANNE is now being
utilized as a key preference learning system in the SOCIETIES project [SOCIETIES
2010].
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